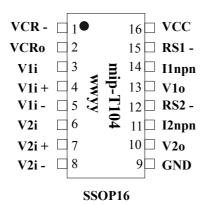

Double Current/voltage interface circuit

• Features

- 2 Current outputs for 3-wire or
- 2 Controllable current sources
- 2 Protected voltage output interfaces
- Adjustable voltage/current regulator
- Processor or sensor supply possible
- Small package: SSOP16

Operating area

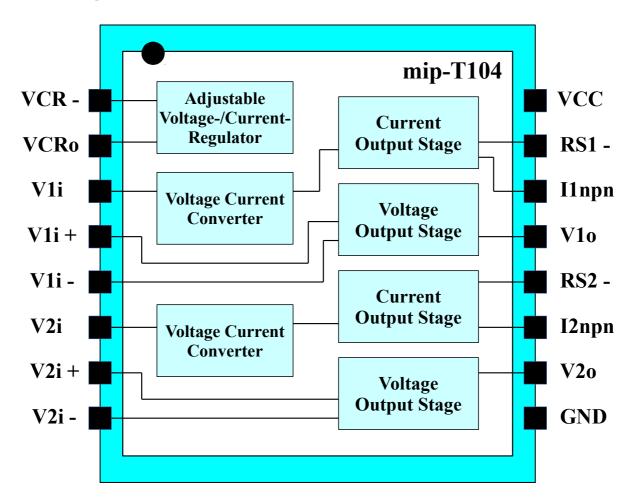
- Temperature range: $T_a = -40 105$ °C
- Voltage range: $V_{CC} = 5 28V$
- Current output: $I_{Io} = 0 20 \text{mA}$, 100 mA max.
- Regulator current: $I_{VCR} = 0 25 \text{mA}$

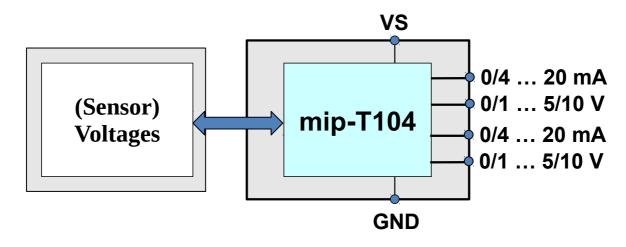

Applications

- Sensors, voltage/current converter
- Controllable current/voltage sources
- 0 5/10V, 0/4 20mA-Interface
- Automation, Building, Medicine, ...

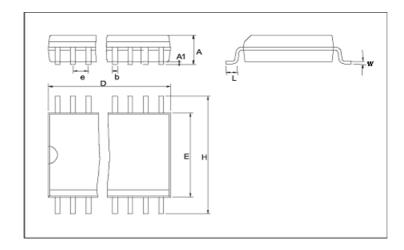
Description

The mip-T104 was developed for the standard 0/4 - 20mA-current 3-wire and voltage (protected) interfaces (replacement for mip-T202) and contains two current and two voltage interfaces. The circuit is also suitable as LED driver (brightness control possible) or as controllable current and voltage sources. With external npn transistors currents up to 100mA are allowed. Additionally the circuit contains an adjustable voltage/current regulator, which can supply and protect the remaining components (sensor, processor, ...).


Anschlüsse


Pin	Designation
VCC	Supply voltage
GND	Ground
VCRo	Voltage / current regulator
VCR -	Regulator input
Vi	Current control input
RS -	Sense resistor
Inpn	npn transistor control
Vi +/-	Voltage control inputs
Vo	Voltage output

micro-part GmbH+Co.is.KG Am Deutelsberg 6 D – 65375 Oestrich-Winkel phone: 06723 / 601 695–0 fax: 06723 / 601 695–6 mail: info@micro-part.de www.micro-part.de Mai 2015 Version 1.0


Block diagram

Typical application

Gehäuse

Shrink Small Outline Package (SSOP) 150 mil – Jedec MO-137, Dimension: mm												
Package-Type		D	E	Н	A	A1	e	b	L	Copl.	w	Rth(j-a)
SSOP 16	nom	4,90	3,90	6,00	1,75	0,15	0,635	0,26	0,72		4°	140 K/W
	max									0,10		

Boundary conditions

Parameter	Symbol	Description	Min.	Тур.	Max.	Unit			
Breakdown Voltage	V_{BR}	external (schottky) diode	35			V			
Forward Current Gain	$\beta_F(T_N)$	external npn-transistor	100						
Absolute Maximum Ratings									
Supply Voltage Range	V_{cc}		0		30	V			
Operating Temperature Range	Ta	ambient temperature	-40		105	°C			
Storage Temperature Range	T _s		-55		150	°C			
Junction Temperature Range	T _j				150	°C			
Power Dissipation	P	$T_{amax} = 85$ °C (with pcb heat sink)			1.25	W			
Lead Temperature	T ₁	soldering 10s			300	°C			

Electrical specifications

 $T_a = 25$ °C, $V_{CC} = 10$ V (unless otherwise noted)

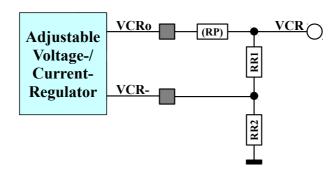
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage Range	V _{cc}		5		28	V
Supply Current	I_{CC}	no external currents		0.8		mA
1) Adjustable Voltage- / Current-	-Regulator: V _{VC}	$V_{RR} = V_{BG} * (R_{R1} + R_{R2}) / R_{R2} \text{ or } I_{VCR} = V_{BG} / R_{R2}$	C _{R2}			
Internal Bandgap Reference	V_{BG}	$V_{CC} > 10V$	1.21	1.24	1.27	V
Bandgap Reference Drift	dV_{BG}/dT	$T_a = 0+50$ °C		±25		ppm/°C
	dV_{BG}/dT	$T_a = -40+105$ °C		±40		ppm/°C
Power Supply Rejection Ratio	PSSR (V _{BG})			80		dB
Output Voltage Drop	V_{DR}	$V_{CC} - V_{VCRo}, I_{VCR} \le 1 \text{mA}$	1.5			V
	V_{DR}	$_{\text{VCC-VVCRo}}$, $I_{\text{VCR}} = 25\text{mA}$	3			V
Output Voltage Range	V_{VCR}		V_{BG}		$V_{CC} - V_{DR}$	V
Output Current	I _{VCR}	respect to power dissipation			25	mA
Load Capacitance	C _L		0	100		nF
2) Protected Voltage Output Stag	ges					
Input Voltage Range	V _{IR}		0		$V_{CC} - 1.5$	V
Power Supply Rejection Ratio	PSRR		80			dB
Offset Voltage	V_{OS}			±0.8		mV
Offset Voltage Drift	dV _{OS} /dT			±2.8		μV/°C
Input Bias Current	I_B			10		nA
Output Voltage Range	V_{OR}	$R_L = 10k\Omega, V_O \le 10V$	0.01		$V_{\rm CC} - 3.5$	V3
	V_{OR}	$R_L = 2k\Omega, V_O \le 10V$	0.005		$V_{\rm CC} - 5$	V
Output Current Limitation	I_{LIM}	short circuit protection	5	7		mA
Load Resistance	R _L	$V_0 \le 10V$	2			kΩ
Load Capacitance	C_{L}		0			nF
3) Current Output Stages: IO =	VI _I / R _S					
Input Voltage Range	V_{IR}	$V_{CC} < 8V$	0		$V_{\rm CC}-2.4$	V
	V_{IR}	$V_{CC} \ge 8V$	0		5	V
Offset Voltage	Vos			±2		mV
Offset Voltage Drift	dV _{os} /dT			±8		μV/°C
Input Bias Current	I_{B}			15		nA
Sense Resistor Voltage	V_{RS}			V_{Vi}		V
Sense Resistor Voltage Fullscale	V _{RS} (FS)				5	V
Output Current Range	IO	internal npn	0		22	mA
	IO	additional external power npn	0	0.2	2	A
Output Offset Current	I_{OS}			-20		μΑ
Stabilization Resistor	R_{z}		$R_s/4$	$R_s/3$		Ω
Output Resistance	R _{IO}		1			MΩ
Load Resistance	R _L	V _{IOmax} / I _{IO}	0	500		Ω
Load Capacitance	C _L		0		50	nF

Functional description

The mip-T104 is designed for use in sensor systems for the construction of analog interfaces. In addition to the two controllable current sources (current interfaces) the circuit contains two voltage interfaces and an adjustable, controllable voltage/current regulator to supply external components such as a sensor cell or a processor. The regulator delivers up to 25mA output current.

The circuit is applicable in the extended temperature range of -40 - 105°C and in the voltage range of 5 - 28V. It is available in a small SSOP16 package. In addition to the current loop and voltage interface, the device is also particularly suitable for LED applications as well as controllable current and voltage sources.

The regulator as well as the current and voltage outputs can be adjusted by external resistors and controlled by external voltages. In addition to these resistors a capacitor (for microprocessor supply, the capacity is usually specified by the manufacturer), additional npn transistors and for reverse polarity protection diodes are needed.


The required minimum supply voltage is defined by the regulator voltage, the maximum voltage on the current and voltage outputs, the minimum internal voltage drops of the mip-T104 and the required external components.

1) Adjustable and controllable voltage/current regulator (Pins: VCR+, VCR-, VCRo)

The regulator is set by external resistors (R_1, R_2) . It is infinitely adjustable from the internal reference voltage (bandgap V_{BG}) up to the supply voltage V_{CC} minus the internal voltage drop V_{DR} . When a sensor is connected in place of R_1 its current is controlled.

Voltage regulator: $VCR = V_{BG} * (1 + \frac{R_{R1}}{R_{B2}})$ (1)

Current regulator: $I_{\text{VCRo}} = \frac{V_{\text{BG}}}{R_{\text{R2}}}$ (2)

2) Two protected voltage interfaces (Pins: Vi+, Vi-, Vo)

The voltage outputs are due to his short-circuit and reverse polarity protection and because of their driving performance are suited as a 0 - 10 V interface. Because of the variable gain other output voltages can also be adjusted.

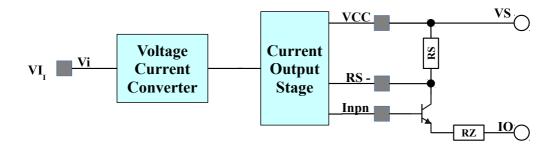
In normal operation, as a non-inverting amplifier, the gain of the resistors R_{V1} and R_{V2} is set, thus

allowing the adjustment of the

output voltage over a wide range.

Output Stage Output voltage calculation: $VO = VI_{v} * (1 + \frac{R_{V1}}{R_{V2}})$ (3)

Voltage


$$R_{V2}$$

3) Two current interfaces (Pins: Vi, RS-, Inpn)

The current outputs are voltage controlled current sources and designed for the current loop interface (0/4 – 20mA, 3-wire). The 20mA (100mA) can be delivered with additional external npn transistors (pay attention to the power dissipation). The circuit is also particularly suitable for LED applications (brightness control possible) as well as for controllable current sources.

The voltage across the sense resistor R_s is controlled by the input voltage Vi, thereby the output current is produced. The input is high impedance. The input voltages can therefore be adjusted with resistive voltage dividers.

Output current:
$$IO = \frac{Vi}{R_s}$$
 (4)

The information provided herein is believed to be reliable; however, micro-part assumes no responsibility for inaccuracies or omissions. micro-part assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licences to any of the circuits described herein are implied or granted to any third party. micro-part does not authorise or warrant any micro-part product use in life support devices and/or systems